
Online Technical Appendix

Hansen, McMahon, and Prat (2017)

This appendix details various technical aspects of the estimation of latent Dirichlet

allocation for the paper “Transparency and Deliberation within the FOMC: a Compu-

tational Linguistics Approach”. It gives background on the Dirichlet distribution, de-

fines LDA and derives Gibbs sampling equations,1 and explains how we form aggregate

topic distributions. All source code is available on https://github.com/sekhansen/

text-mining-tutorial, and an example of implementing the analysis is worked through

on http://nbviewer.ipython.org/github/sekhansen/text-mining-tutorial/blob/

master/tutorial_notebook.ipynb.

1 Properties of the Dirichlet distribution

ADirichlet random variable is characterized in terms of a parameter vector α = (α1, . . . , αK)

and has a probability density function given by

Dir(θ | α) = 1

B(α)

K∏
k=1

θαk−1
k

where

B(α) ≡

K∏
k=1

Γ(αk)

Γ(α0)
and α0 ≡

K∑
k=1

αk.

Now suppose we have count data of the form X = (x1, . . . , xn) where each xi is a

single draw from a categorical distribution with parameter θ = (θ1, . . . , θK); that is,

Pr [ xi = k | θ ] = θk. The probability of observing a particular X is then

Pr [X | θ ] =
K∏
k=1

θNk
k

where Nk is the number of observations drawn in category k. If we place a Dirichlet prior

on the θ parameters, then the posterior satisfies

Pr [ θ | X,α ] ∝ Pr [X | θ ] Pr [ θ ] ∝
K∏
k=1

θNk
k

K∏
k=1

θαk−1
k =

K∏
k=1

θNk+αk−1
k

1Heinrich (2009) contains additional material.
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which after normalization gives

Pr [ θ | X,α ] =
1

B(α1 +N1, α2 +N2, . . . , αK +NK)

K∏
k=1

θNk+αk−1
k ,

a Dirichlet with parameters (α1 + N1, . . . , αK + NK). In other words, the Dirichlet is

conjugate to the categorical distribution.

Given conjugacy, we can derive a closed-form expression for the model evidence

Pr [X | α ], which must satisfy

Pr [ θ | X,α ] =
Pr [ θ | α ] Pr [X | θ, α ]

Pr [X | α ]
.

We have given expressions for all these probabilities except Pr [X | α ] above—note that

Pr [X | θ, α ] = Pr [X | θ ], and simple substitution gives

Pr [X | α ] =
Γ(
∑

k αk)

Γ(N +
∑

k αk)

∏
k

Γ(Nk + αk)

Γ(αk)
(1)

where N =
∑

k Nk.

2 LDA: Model and Estimation

The data generating process of Latent Dirichlet Allocation is the following:

1. Draw βk independently for k = 1, . . . , K from Dirichlet(η).

2. Draw θd independently for d = 1, . . . , D from Dirichlet(α).

3. Each word wd,n in document d is generated from a two-step process:

(a) Draw topic assignment zd,n from θd.

(b) Draw wd,n from βzd,n .

The observed data isW = (w1, . . . ,wD), while the unobserved data is Z = (z1, . . . , zD).

Given the statistical structure of LDA, the joint likelihood factors as follows:

Pr [W,Z | α, η ] = Pr [W | Z, η ] Pr [Z | α ].

Expressions for each factor are easy to derive from results in the previous section. Let md
k

be the number of words from topic k in document d. By (1), the probability of observing

this in one document is
Γ(Kα)

Γ(Nd +Kα)

∏
k

Γ(md
k + α)

Γ(α)
.
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Where Nd =
∑

k m
d
k is the total number of words in document d. So, the probability of

observing the topic assignments across all documents is

∏
d

Γ(Kα)

Γ(Nd +Kα)

∏
k

Γ(md
k + α)

Γ(α)
=

[
Γ(Kα)

ΓK(α)

]D ∏
d

∏
k Γ(m

d
k + α)

Γ(Nd +Kα)
.

By similar calculations we obtain

Pr [W | Z, η ] =
[
Γ(V η)

ΓV (η)

]K ∏
k

∏
v Γ(m

k
v + η)

Γ(
∑

v m
k
v + V η)

,

where mk
v be the number of times token v is assigned to topic k.

In this way, we have written the probability of the data (W,Z) in terms of word

and topic assignment counts, and eliminated the θd and βk parameters. This expression

facilitates the derivation of a collapsed Gibbs sampler.

2.1 Full conditional distribution

To construct a collapsed Gibbs sampler, we need to compute the probability that zd,n = k

given the other topic assignments Z−(d,n) and words W . By Bayes’ rule, we have

Pr
[
zd,n = k

∣∣ Z−(d,n),W, α, η
]
=

Pr
[
zd,n = k, Z−(d,n),W

∣∣ α, η ]
Pr

[
Z−(d,n),W

∣∣ α, η ] =

Pr
[
W

∣∣ zd,n = k, Z−(d,n), η
]
Pr

[
zd,n = k, Z−(d,n)

∣∣ α ]
Pr

[
W

∣∣ Z−(d,n), η
]
Pr

[
Z−(d,n)

∣∣ α ] ∝

Pr
[
W

∣∣ zd,n = k, Z−(d,n), η
]
Pr

[
zd,n = k, Z−(d,n)

∣∣ α ]
Pr

[
W−(d,n)

∣∣ Z−(d,n), η
]
Pr

[
Z−(d,n)

∣∣ α ] .

The final step follows first from Pr
[
W

∣∣ Z−(d,n), η
]
= Pr [wd,n ] Pr

[
W−(d,n)

∣∣ Z−(d,n), η
]

given that zd,n—which generates wd,n—is drawn independently of Z−(d,n).

From this expression, one can directly compute terms from the equations above. Let’s

rewrite Pr
[
zd,n = k, Z−(d,n)

∣∣ α ]
in the following way, equivalent to the expression above[∏

d′ ̸=d

Γ(Kα)

Γ(nd′ +Kα)

∏
K

Γ(md′

k ) + α

α

][∏
k′ ̸=k

Γ(md
k′ + α)

Γ(α)

]
Γ(Kα)

Γ(nd +Kα)

Γ(md
k + α)

Γ(α)
=[∏

d′ ̸=d

Γ(Kα)

Γ(nd′ +Kα)

∏
K

Γ(md′

k ) + α

α

][∏
k′ ̸=k

Γ(md
k′ + α)

Γ(α)

]
Γ(Kα)

Γ(nd +Kα)

Γ(md
k,−n + 1 + α)

Γ(α)

where md
k,−n is the number of slots in document d assigned to topic k excluding the nth
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slot. One can similarly write Pr
[
Z−(d,n)

∣∣ α ]
as[∏

d′ ̸=d

Γ(Kα)

Γ(nd′ +Kα)

∏
k

Γ(md′

k ) + α

α

][∏
k′ ̸=k

Γ(md
k′ + α)

Γ(α)

]
Γ(Kα)

Γ(nd − 1 +Kα)

Γ(md
k,−n + α)

Γ(α)

Using the fact that Γ(x+1)
Γ(x)

= x, we obtain that

Pr
[
zd,n = k, Z−(d,n)

∣∣ α ]
Pr

[
Z−(d,n)

∣∣ α ] =
md

k,−n + α

nd − 1 +Kα
.

Similarly, one can write Pr
[
W

∣∣ zd,n = k, Z−(d,n), η
]
as[∏

k′ ̸=k

Γ(V η)

Γ(
∑

v m
k′
v + V η)

∏
v

Γ(mk′
v + η)

Γ(η)

][∏
v′ ̸=v

Γ(mk
v′ + η)

Γ(η)

]
Γ(V η)

Γ(
∑

v m
k
v + V η)

Γ(mk
v + η)

Γ(η)
=[∏

k′ ̸=k

Γ(V η)

Γ(
∑

v m
k′
v + V η)

∏
v

Γ(mk′
v + η)

Γ(η)

][∏
v′ ̸=v

Γ(mk
v′ + η)

Γ(η)

]
Γ(V η)

Γ(
∑

v m
k
v + V η)

Γ(mk
v,−(d,n) + 1 + η)

Γ(η)

where v is implicitly the token assignment of the nth slot of document d. Moreover

Pr
[
W

∣∣ Z−(d,n), η
]
becomes[∏

k′ ̸=k

Γ(V η)

Γ(
∑

v m
k′
v + V η)

∏
v

Γ(mk′
v + η)

Γ(η)

][∏
v′ ̸=v

Γ(mk
v′ + η)

Γ(η)

]
Γ(V η)

Γ(
∑

v m
k
v,−(d,n) + V η)

Γ(mk
v,−(d,n) + η)

Γ(η)
.

We know that
∑

v m
k
v,−(d,n)+1 =

∑
v m

k′
v : because the nth slot of document d with token

v has been assigned topic k, if we exclude it from the dataset, then the total number of

times the token v is assigned to topic k is one less. So

Pr
[
W

∣∣ zd,n = k, Z−(d,n), η
]

Pr
[
W−(d,n)

∣∣ Z−(d,n), η
] =

mk
v,−(d,n) + η∑

v m
k
v,−(d,n) + V η

.

We conclude that

Pr
[
zd,n = k

∣∣ Z−(d,n),W, α, η
]
∝

mk
v,−(d,n) + η∑

v m
k
v,−(d,n) + V η

(
md

k,−n + α
)
.

Note that we can exclude the nd − 1 +Kα term since it doesn’t vary with k.

2.2 Gibbs sampling algorithm

From the conditional distribution computed above, we implement the following algorithm:

1. Randomly allocate to each token in the corpus a topic assignment drawn uniformly
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from {1, . . . , K}.

2. For each token, sequentially draw a new topic assignment via multinomial sampling

where

Pr
[
zd,n = k

∣∣ Z−(d,n),W, α, η
]
∝

mk
v,−(d,n) + η∑

v m
k
v,−(d,n) + V η

(
md

k,−n + α
)
.

3. Repeat step 2 4,000 times as a burn in phase.

4. Repeat step 2 4,000 more times, and store every 50th sample.

2.3 Predictive distributions

The collapsed Gibbs sampler gives an estimate of each word’s topic assignment, but

not the parameters θd and βk since these are collapsed out of the likelihood function. In

order to describe a document’s topic distribution and the topics themselves, the following

predictive distributions are used.

β̂v
k =

mk
v + η∑V

v=1 (m
k
v + η)

(2)

and

θ̂kd =
md

k + α∑K
k=1

(
md

k + α
) . (3)

The derivation of the predictive distribution for a Dirichlet is standard, see for example

Murphy (2012) section 3.4.4.

2.4 Convergence

As with all Markov Chain Monte Carlo methods, the realized value of any one chain de-

pends on the random starting values and determining if a chain has converged is impor-

tant. To address these concerns, for each specification of the model we run five different

chains starting from five different initial seeds. Along each chain we then compute the

value of the model’s perplexity at regular intervals. Perplexity is a common measure of

fit in the natural language processing literature. The formula is

exp

−∑D
d=1

∑V
v=1 nd,v log

(∑K
k=1 θ̂

k
d β̂

v
k

)
∑D

d=1 Nd


where nd,v is the number of times word v occurs in document d.
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Table 1: Perplexity scores for five chains (40-topic model)

Iteration Chain 1 Chain 2 Chain 3 Chain 4 Chain 5
4000 1002.015275 1000.84559 1001.237111 1002.678028 1000.940867
5000 1001.984839 1001.151012 1001.403589 1002.654002 1001.017522
6000 1002.106541 1001.08223 1001.862532 1002.640741 1000.594744
7000 1002.094333 1000.698283 1001.677683 1001.914573 1000.766348
8000 1002.242386 1000.935695 1001.559882 1002.37538 1000.462472
Mean 1002.093755 1000.939742 1001.581274 1002.331845 1000.711352
SD 0.207715083 0.217669923 0.193039164 0.250924429 0.282573422

Table 1 reports values of perplexity along five chains drawn for the 40-topic model at

various iterations.2 Various features are worth noting. First, from the 4,000th iteration

onwards the perplexity values are quite stable, indicating that the chains have converged.

Second, the differences in perplexity across chains are marginal, indicating that the esti-

mates are not especially sensitive to starting values. Third, chain 5 performs marginally

better in terms of average perplexity, so we use it in our baseline analysis. Fourth, chain

3 achieves the lowest standard deviation, so we use it for the robustness check described

in section 7 of the main paper.

3 Estimating aggregate document distributions

As explained in the text, we are more interested in the topic distributions at the meeting-

speaker-section level rather than at the individual statement level. Denote by θi,t,s the

topic distribution of the aggregate document. Let wi,t,s,n be the nth word in the document,

zi,t,s,n its topic assignment, vi,t,s,n its token index, mi,t,s
k the number of words in the docu-

ment assigned to topic k, andmi,t,s
k,−n the number of words besides the nth word assigned to

topic k. To re-sample the distribution θi,t,s, for each iteration j ∈ {4050, 4100, . . . , 8000}
of the Gibbs sampler:

1. Form mi,t,s
k from the topic assignments of all the words that compose the aggregate

document (i, t, s) from the Gibbs sampling.

2. Drop wi,t,s,n from the sample and form the count mi,t,s
k,−n.

3. Assign a new topic for word wi,t,s,n by sampling from

Pr
[
zi,t,s,n = k

∣∣ z−(i,t,s,n),wi,t,s

]
∝ β̂

vi,t,s,n
k

(
mi,t,s

k,−n + α
)

(4)

where z−(i,t,s,n) is the vector of topic assignments in document (i, s, t) excluding

word n and wi,t,s is the vector of words in the document.

2We only report values at a limited number of iterations here for space. The same analysis done over
finer intervals yields very similar results.
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4. Proceed sequentially through all words.

5. Repeat 20 times.

We then obtain the aggregate document predictive distribution

θ̂ki,t,s =
mi,t,s

k + α∑K
k=1

(
mi,t,s

k + α
) . (5)

This is identical to the regular Gibbs sampling procedure except for two differences.

First, the topics are kept fixed at the values of their predictive distributions rather than

estimated. Second, because topics do not need to be estimated, many fewer iterations

are needed to sample topic assignments for each document.
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